Goal:
How to control the number of Mappers and Reducers in Hive on Tez.Env:
Hive 2.1Tez 0.8
Solution:
1. # of Mappers
Which Tez parameters control this?- tez.grouping.max-size(default 1073741824 which is 1GB)
- tez.grouping.min-size(default 52428800 which is 50MB)
- tez.grouping.split-count(not set by default)
DAG syslog in the DAG Application Master container directory.
Search for "grouper.TezSplitGrouper", for example:
# grep grouper.TezSplitGrouper syslog_dag_1475192050844_0026_1 2017-05-23 15:00:50,285 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Grouping splits in Tez 2017-05-23 15:00:50,288 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Desired numSplits: 59 lengthPerGroup: 97890789 numLocations: 4 numSplitsPerLocation: 40 numSplitsInGroup: 2 totalLength: 5775556608 numOriginalSplits: 161 . Grouping by length: true count: false nodeLocalOnly: false 2017-05-23 15:00:50,291 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Doing rack local after iteration: 18 splitsProcessed: 139 numFullGroupsInRound: 0 totalGroups: 68 lengthPerGroup: 73418096 numSplitsInGroup: 1 2017-05-23 15:00:50,291 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Allowing small groups after iteration: 19 splitsProcessed: 139 numFullGroupsInRound: 0 totalGroups: 68 2017-05-23 15:00:50,291 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Number of splits desired: 59 created: 69 splitsProcessed: 161This means, this Hive on Tez query finally spawns 69 Mappers.
If we set tez.grouping.max-size=tez.grouping.min-size=1073741824(1G), here is the result:
# grep grouper.TezSplitGrouper syslog_dag_1475192050844_0030_1 2017-05-23 17:16:11,851 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Grouping splits in Tez 2017-05-23 17:16:11,852 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Desired splits: 6 too large. Desired splitLength: 97890789 Min splitLength: 1073741824 New desired splits: 6 Final desired splits: 6 All splits have localhost: false Total length: 5775556608 Original splits: 161 2017-05-23 17:16:11,854 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Desired numSplits: 6 lengthPerGroup: 962592768 numLocations: 4 numSplitsPerLocation: 40 numSplitsInGroup: 26 totalLength: 5775556608 numOriginalSplits: 161 . Grouping by length: true count: false nodeLocalOnly: false 2017-05-23 17:16:11,856 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Doing rack local after iteration: 3 splitsProcessed: 135 numFullGroupsInRound: 0 totalGroups: 6 lengthPerGroup: 721944576 numSplitsInGroup: 19 2017-05-23 17:16:11,856 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Allowing small groups after iteration: 4 splitsProcessed: 135 numFullGroupsInRound: 0 totalGroups: 6 2017-05-23 17:16:11,856 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Number of splits desired: 6 created: 7 splitsProcessed: 161This time only 7 Mappers are spawned because of "Min splitLength: 1073741824".
If we set tez.grouping.split-count=13 here is the result:
# grep grouper.TezSplitGrouper syslog_dag_1475192050844_0039_1 2017-05-24 16:27:05,523 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Grouping splits in Tez 2017-05-24 16:27:05,523 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Desired numSplits overridden by config to: 13 2017-05-24 16:27:05,526 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Desired numSplits: 13 lengthPerGroup: 444273585 numLocations: 4 numSplitsPerLocation: 40 numSplitsInGroup: 12 totalLength: 5775556608 numOriginalSplits: 161 . Grouping by length: true count: false nodeLocalOnly: false 2017-05-24 16:27:05,528 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Doing rack local after iteration: 5 splitsProcessed: 156 numFullGroupsInRound: 0 totalGroups: 14 lengthPerGroup: 333205184 numSplitsInGroup: 9 2017-05-24 16:27:05,528 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Allowing small groups after iteration: 6 splitsProcessed: 156 numFullGroupsInRound: 0 totalGroups: 14 2017-05-24 16:27:05,528 [INFO] [InputInitializer {Map 1} #0] |grouper.TezSplitGrouper|: Number of splits desired: 13 created: 15 splitsProcessed: 161This time 15 Mappers are spawned because of "Desired numSplits overridden by config to: 13".
BTW, the query tested is "select count(*) from passwords".
Here "Original splits: 161" means there are totally 161 files:
# ls passwords|wc -l 161Here "Total length: 5775556608" means the table size is about 5.4G:
# du -b passwords 5775556769 passwords
The detailed algorithm is in tez-mapreduce/src/main/java/org/apache/tez/mapreduce/grouper/TezSplitGrouper.java.
And also this article is explaining the logic:https://cwiki.apache.org/confluence/display/TEZ/How+initial+task+parallelism+works
2. # of Reducers
Same as Hive on MR query, below parameters controls # of Reducers:- hive.exec.reducers.bytes.per.reducer(default 256000000)
- hive.exec.reducers.max(default 1009)
- hive.tez.auto.reducer.parallelism(default false)
hive> select count(*) from passwords a, passwords b where a.col0=b.col1; Query ID = mapr_20170524140623_bc36636e-c295-4e75-b7ac-fe066320dce1 Total jobs = 1 Launching Job 1 out of 1 Status: Running (Executing on YARN cluster with App id application_1475192050844_0034) ---------------------------------------------------------------------------------------------- VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED ---------------------------------------------------------------------------------------------- Map 1 .......... container SUCCEEDED 69 69 0 0 0 0 Map 4 .......... container SUCCEEDED 69 69 0 0 0 0 Reducer 2 ...... container SUCCEEDED 45 45 0 0 1 0 Reducer 3 ...... container SUCCEEDED 1 1 0 0 0 0 ---------------------------------------------------------------------------------------------- VERTICES: 04/04 [==========================>>] 100% ELAPSED TIME: 164.32 s ---------------------------------------------------------------------------------------------- OK 0"Reducer 2" spawns 45 Reducers.
If we double hive.exec.reducers.bytes.per.reducer to 512000000, "Reducer 2" spawns only half # of Reducers -- 23 this time.
hive> set hive.exec.reducers.bytes.per.reducer=512000000; hive> select count(*) from passwords a, passwords b where a.col0=b.col1; Query ID = mapr_20170524142206_d07caa6a-0061-43a6-b5e9-4f67880cf118 Total jobs = 1 Launching Job 1 out of 1 Tez session was closed. Reopening... Session re-established. Status: Running (Executing on YARN cluster with App id application_1475192050844_0035) ---------------------------------------------------------------------------------------------- VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED ---------------------------------------------------------------------------------------------- Map 1 .......... container SUCCEEDED 69 69 0 0 0 0 Map 4 .......... container SUCCEEDED 69 69 0 0 0 0 Reducer 2 ...... container SUCCEEDED 23 23 0 0 0 0 Reducer 3 ...... container SUCCEEDED 1 1 0 0 0 0 ---------------------------------------------------------------------------------------------- VERTICES: 04/04 [==========================>>] 100% ELAPSED TIME: 179.62 s ---------------------------------------------------------------------------------------------- OK 0
Of course, we can set a hard limit of # of Reducers by setting hive.exec.reducers.max=10:
hive> set hive.exec.reducers.max=10; hive> select count(*) from passwords a, passwords b where a.col0=b.col1; Query ID = mapr_20170524142736_4367dee2-b695-4162-ad47-99d7ff2311bc Total jobs = 1 Launching Job 1 out of 1 Status: Running (Executing on YARN cluster with App id application_1475192050844_0035) ---------------------------------------------------------------------------------------------- VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED ---------------------------------------------------------------------------------------------- Map 1 .......... container SUCCEEDED 69 69 0 0 0 0 Map 4 .......... container SUCCEEDED 69 69 0 0 0 0 Reducer 2 ...... container SUCCEEDED 10 10 0 0 1 0 Reducer 3 ...... container SUCCEEDED 1 1 0 0 0 0 ---------------------------------------------------------------------------------------------- VERTICES: 04/04 [==========================>>] 100% ELAPSED TIME: 153.35 s ---------------------------------------------------------------------------------------------- OK 0
Another feature is controlled by hive.tez.auto.reducer.parallelism:
Turn on Tez' auto reducer parallelism feature. When enabled, Hive will still estimate data sizes and set parallelism estimates. Tez will sample source vertices' output sizes and adjust the estimates at runtime as necessary.
hive> set hive.tez.auto.reducer.parallelism = true; hive> select count(*) from passwords a, passwords b where a.col0=b.col1; Query ID = mapr_20170524143541_18b3c2b6-75a8-4fbb-8a0d-2cf354fd7a72 Total jobs = 1 Launching Job 1 out of 1 Status: Running (Executing on YARN cluster with App id application_1475192050844_0036) ---------------------------------------------------------------------------------------------- VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED ---------------------------------------------------------------------------------------------- Map 1 .......... container SUCCEEDED 69 69 0 0 0 0 Map 4 .......... container SUCCEEDED 69 69 0 0 0 0 Reducer 2 ...... container SUCCEEDED 12 12 0 0 1 0 Reducer 3 ...... container SUCCEEDED 1 1 0 0 0 0 ---------------------------------------------------------------------------------------------- VERTICES: 04/04 [==========================>>] 100% ELAPSED TIME: 143.69 s ---------------------------------------------------------------------------------------------- OK 0From DAG syslog file, we can see in the beginning "Reducer 2" tried to spawn 90 Reducers, and then it got changed to 12 at runtime:
[root@s3 container_e02_1475192050844_0036_01_000001]# grep "Reducer 2" syslog_dag_1475192050844_0036_1 |grep parallelism 2017-05-24 14:36:36,831 [INFO] [App Shared Pool - #0] |vertexmanager.ShuffleVertexManager|: Reducing auto parallelism for vertex: Reducer 2 from 90 to 12 2017-05-24 14:36:36,837 [INFO] [App Shared Pool - #0] |impl.VertexImpl|: Resetting vertex location hints due to change in parallelism for vertex: vertex_1475192050844_0036_1_02 [Reducer 2] 2017-05-24 14:36:36,841 [INFO] [App Shared Pool - #0] |impl.VertexImpl|: Vertex vertex_1475192050844_0036_1_02 [Reducer 2] parallelism set to 12 from 90
Batman
ReplyDeleteArdahan
Adıyaman
Antalya
Giresun
GZG
CE38E
ReplyDeleteKeçiören Fayans Ustası
Etimesgut Boya Ustası
Tekirdağ Parça Eşya Taşıma
Aydın Parça Eşya Taşıma
Ünye Asma Tavan
Yalova Lojistik
Probit Güvenilir mi
Afyon Şehirler Arası Nakliyat
Niğde Parça Eşya Taşıma
C4909
ReplyDeleteindirim kodu %20
4EDC1
ReplyDeletebinance referans kodu %20
44967
ReplyDeletezonguldak kadınlarla sohbet
rastgele sohbet
ordu sohbet muhabbet
canlı sohbet odası
manisa sesli sohbet mobil
bedava görüntülü sohbet sitesi
bolu yabancı görüntülü sohbet uygulamaları
goruntulu sohbet
zonguldak canlı sohbet siteleri ücretsiz
AC27A
ReplyDeleteeskişehir canlı sohbet et
canlı sohbet
telefonda sohbet
sinop görüntülü sohbet uygulamaları ücretsiz
muş muhabbet sohbet
en iyi rastgele görüntülü sohbet
ısparta goruntulu sohbet
Amasya Canlı Sohbet
karabük görüntülü sohbet canlı
C3B41
ReplyDeletePepecoin Coin Hangi Borsada
Bitcoin Nasıl Üretilir
Sohbet
Soundcloud Reposts Satın Al
Bitcoin Madenciliği Nasıl Yapılır
Tiktok İzlenme Satın Al
Kwai Beğeni Satın Al
Kripto Para Madenciliği Nedir
Mexc Borsası Güvenilir mi
A8EB3
ReplyDeleteThreads Yeniden Paylaş Hilesi
Coin Kazma Siteleri
Linkedin Beğeni Satın Al
Parasız Görüntülü Sohbet
Tiktok İzlenme Hilesi
Binance Kimin
Instagram Beğeni Satın Al
Coin Nedir
Madencilik Nedir
A269D
ReplyDeletekaldıraç ne demek
probit
en iyi kripto para uygulaması
mercatox
en az komisyon alan kripto borsası
mobil proxy 4g
bitget
kraken
huobi
04674
ReplyDeletegörüntülü şov whatsapp numarası
0CCB411827
ReplyDeleteskype şov
bufalo çikolata
geciktirici
canli web cam show
ücretli show
ereksiyon hapı
skype show
cialis
whatsapp görüntülü show güvenilir